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The methodical study of safeguard of artistic heritage and other devices subjected to ear-
thquake and, in general, to time-dependent forces has considerably spreaded in the last years,
thus increasing researchers’ interest in problems concerning motions of rigid objects simply
supported on a base plane. The behaviour of piece of equipments, statues, storage tanks, or
even tall buildings has been in fact studied as that of rigid bodies with relation to different
base excitations. In some cases, the possibility of influencing the quality of motion can be a
strong tool to reduce vulnerability, like in the cases in which rocking motion is to be avoided
and sliding motion is welcome. This paper focuses the attention on this last problem. This
is the same large class of both non-structural and structural elements that can lose their
functionality because of earthquake motions. The results of numerical modelling of sliding
and rocking motion in presence of both different excitations and mechanical parameters are
presented and compared with experimental data performed by the authors. The results de-
veloped are in good agreement with the laboratory tests, and this assures the reliability of
both the analytical procedure and the determination of the parameters involved.

Keywords: rocking and sliding motion, freestanding rigid body, nonlinear dynamics, experi-
mental testing

1. Introduction

The limitation of excessive motion of rigid bodies under earthquake excitation is a fundamental
topic in the seismic protection of art objects in museums (Erdik et al., 2010; Agbabian et al.,
1991), medical devices in hospitals (Konstantinidis and Makris, 2009) and goods stored in ships.
Since late XIX century, the behaviour of piece of equipments, statues, storage tanks, or even
tall buildings has been studied as that of rigid bodies with relation to different base excitations
(Cennamo et al., 2017). Six basic conditions (Augusti and Sinopoli, 1992) have been distingu-
ished: rest, slide, rock, slide-rock, impact and free flight (Andreaus and Casini, 1999). Despite its
familiarity and apparent simplicity, motions of rigid bodies in response to earthquake excitations
pose extremely difficult problems when exact solutions are sought (Voyagaki et al., 2014). A rigid
structure placed on a shaking base may enter into rocking motion that occasionally results in
overturning (Guadagnuolo and Monaco, 2009). In some cases (small objects and equipments),
the protection of the object can be obtained by controlling the overturning through providing
an inclination to the support base in order to have a preferential direction toward a safe area
(Boroshek and Iruretagoyena, 2006).
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Early studies on the rocking response of a rigid block supported on a base undergoing ho-
rizontal motion were presented by Housner (1963). To study the problem, it was necessary to
first establish equations of motion of the rigid body and solve them accordingly. This was first
done just by Housner following the Chilean earthquakes in 1960. Housner first considered the
base motion as more irregular time functions modelled by a white noise random process. In
the piecewise model by Housner, the block can only rotate around one of the base corners, and
the friction coefficient is large enough to prevent any sliding. Shenton (1996) showed that the
quality of motion of a rigid object simply supported on an uniformly accelerating rigid plane
depended not only on the object shape and the base acceleration, but on the friction coefficient
as well. According the author, friction required to initiate a rock mode increased with ground
acceleration. It was shown (Monaco et al., 2014) that the range of sliding-rock was larger in the
case of a harmonic excitation. The role of friction and its influence in the quality of motion was
elsewhere taken into account (Sinopoli, 1997).

Since Housner had already pointed out that the rocking response of a rigid body to base
motion was sensitive to the parameters defining the geometry of the body and details of base
motion, Yim and Lin (1991) decided that the problem should be examined from a probabilistic
point of view. Using a limited number of simulated ground motions, the authors numerically
solved the equation of the problem and produced fragility curves giving the probability of the
body overturn. Aslam et al. (1978, 1980) obtained the rocking response of a rigid body subjected
to harmonic shaking as well to simulate earthquake motions both numerically and by labora-
tory experiments. The work of Aslam essentially confirmed the findings of Housner and Yim
et al. (1980) about the difficult response prediction. In 1999, Shao and Tung followed the same
approach as Yim et al. but used two types of base motions: 50 artificial earthquakes simulated
in a way identical to that of Yim and 75 real earthquakes. Shao reached the same conclusion as
Yim et al. but showed that real earthquakes gave less probability of overturning that simulated
earthquakes did. In the first studies performed in Japan (Ishiyama, 1982), the computer simu-
lation performed by the author showed that the horizontal velocity as well as the acceleration
had to be taken into account as criteria for overturning. In engineering seismology, the rocking
problem is of interest from the point of view of characterizing the ground motion level through
study of overturned objects, although in many cases this practice is rather misleading and me-
aningless (Apostolou et al., 2007). The problem becomes simpler in the case of a massless rigid
foundation as examined in Sienkiewicz (2009), where only properties of the surrounding ground
are considered. The simplest mathematical models that have received notable attention in the
past were the planar rocking of rigid rectangular blocks with nonzero mass under harmonic base
motions (Spanos and Koh, 1984), although the influence of the ground motion properties have
been analyzed since the first paper of Yim et al. above mentioned. In the harmonic problem,
even in the case of a one-sine pulse (Zhang and Makris, 2001), non-linearity arises not only in
the load deflection characteristic but also in dissipation of energy due to impacts (Purvance et
al., 2008; Chierchiello et al., 2015).

Some studies on the response of such a system have revealed the presence of a rich variety of
non-linear resonances and even the possibility of the response becoming chaotic (Bergamasco et
al., 2018). Tackling analytically the equations of motion in the case of real earthquake ground
motions is a non trivial task even for very simple waveforms (Konstantinidis and Makris, 2010).
A range of idealized ground acceleration pulses expressed by a generalized function controlled
by a single shape parameter were considered in Voyagaki et al. (2013). The problem was tre-
ated analytically by means of linearized equations of motion on the assumption of slender block
geometry and rocking without sliding. The peak rocking response and overturning criteria for
different waveforms were presented in terms of dimensionless closed-form expressions and gra-
phs. The papers above mentioned (Konstantinidis and Makris, 2009, 2010) reported a series of
tests in which the transient rocking response of electrical transformers subjected to horizontal
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trigonometric pulses and near source ground motion were investigated in depth. First, it was
shown that the solution presented by Housner for the minimum acceleration amplitude of a
half-sine pulse that was needed to overturn a rigid block was unconservative. In reality, under a
half-sine pulse a block overturns during its free-vibration regime and not at the instant that the
pulse expires. Within the limits of linear approximation, the correct expression that yields the
minimum acceleration required to overturn a block is derived. Under realistic conditions, the
rocking response of a rigid block is affected by additional factors such as the vertical component
of the ground acceleration and the additional energy loss due to plastic deformations at the pivot
points (Gesualdo and Monaco, 2015). Recent attempts to derive equivalence between a single
rocking block and various rocking mechanisms in order to give indication for real structures has
been made (Spanos et al., 2001; DeJong and Dimitrakopoulos, 2014). In general, while the roc-
king response under a deterministic excitation has received considerable attention (Gesualdo et
al., 2014, 2018), the corresponding studies on stochastic behaviour are sparse. A significant work
on stochastic analysis was carried out by Spanos and Koh (1984). They employed the statistical
linearization technique to study stochastic rocking of a rigid rectangular block on Winkler’s
foundation due to non-stationary shaking. Koh (1986) further studied this problem through a
digital simulation technique and estimated the probability of no toppling. The stochastic re-
sponse of a rigid rectangular block resting on a rigid foundation and acted upon simultaneously
by a horizontal and a vertical stationary white-noise excitation was considered. Recent works
(Prieto and Lourenço, 2005) have tried to unify the piecewise formulation by Housner with the
same hypothesis of a large friction coefficient. The traditional piecewise equations were replaced
by a single ordinary differential equation, and damping effects were no longer introduced by
means of a coefficient of restitution, but were understood as the presence of impulsive forces.
The results are in agreement with the classical formalism, and can be set in the direct analogy
with either a two-body central problem in the complex plane or an inverted pendulum through
simple variable transformations. Unfortunately, these elegant formulations are unsuitable when
rocking motion is to be avoided and sliding motion is welcome.

Recently, the dynamic response of a rocking block subjected to base excitation has been
revisited to offer new closed-form solutions and original similarity laws that shed light on the
fundamental aspects of the original model by Dimitrakopoulos and DeJong (2012). The focus is
on the transient dynamics of the rocking block under finite-duration excitations. In the process,
limitations of standard dimensional analysis related to the orientations of the involved physical
quantities are revealed. The work shows that the nonlinear and non-smooth rocking response to
pulse-type ground motion can be directly determined and need only to be scaled by the intensity
and frequency of the excitation. The typology of impulses can in fact reduce or amplify the
rocking response. It has been shown that in the case of multiple impulse rocking, the amplification
may be significant (DeJong, 2012).

In this work, a comparison between experimental observations and theoretical models for
the rocking of rigid bodies has been made. The dynamic tests elsewhere described (Monaco et
al., 2014) and performed taking into account the influence of different parameters (Makris and
Kampas, 2016) have been used to validate the analytical model and estimate both the restitution
coefficient and the dynamic friction coefficient.

2. Theoretical analysis

According to the classical approach, in the response of a rigid block simply supported on a
shaking plane base six basic conditions can be distinguished: rest, slide, rock, slide-rock, free
flight. The analytical models revised here in the following take into account the first four clas-
ses of motion and are identified by comparing their responses with the results obtained from
experimental tests on a shaking table.
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2.1. Rocking model

In this Section, the pure rocking motion is examined. Reference is made to Fig. 1, in which
a rigid block with the aspect ratio b/h, simply supported on a moving plane is shown (Zhang
and Makris, 2001).

Fig. 1. Reference systems and the single block in rocking for θ(t) < 0 (left) and θ(t) > 0 (right)

The block with base 2b, height 2h and mass m can rotate alternatively around the two base
corners O and O′, and energy is lost only during impact, when the angle of rotation θ(t) reverses.
According to the classical approach of the dynamics of the inverted pendulum under impulsive
excitations (Lenci and Rega, 2000), the velocity field after a perfect plastic and centered impact
is related to the pre-impact field by means of the reduction coefficient e. In particular e =

√
r,

being r the restitution coefficient in the Housner sense. The coefficient e can be assumed constant
during the motion, so that the angular velocity θ̇+(t) of the block after the impact can be given
as a function of the angular velocity θ̇−(t) before it (Fig. 1)

θ̇+(t) = eθ̇−(t) (2.1)

In the case of the perfect plastic impact, conservation of angular momentum about the point O′

just before the impact and right after the impact gives

(Io − 2mRb sinα)θ̇−(t) = Ioθ̇+(t) (2.2)

where Io is the moment of inertia (defined with respect to O or O
′), R is the distance of the

center of mass G from the corners O or O′ and α is the angle between R and the vertical edge
of the block (see Fig. 1). The combination of (2.1) and (2.2) gives for a rectangular block

e = 1− 3
2
sin2 α (2.3)

Energy dissipation is involved for e < 1. Rocking motion is present when static friction with
the base plane prevents sliding. Adopting the notation by Shenton (1996), let fx and fy be the
horizontal and vertical reactions at the tip O′ of the block, at all times it is

|fx| ¬ µsfy (2.4)

In other words, starting from an equilibrium configuration of the system, when the angular
momentum of inertia forces is greater than that due to the gravity force, rocking motion holds
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true with condition (2.4). The rocking motion, according to d’Alembert’s principle, is governed
by the following relations with clockwise positive rotations

Ioθ̈(t) +mgR sin(−α− θ(t)) = −mẍg(t)R cos(−α− θ(t)) θ(t) < 0

Ioθ̈(t) +mgR sin(α− θ(t)) = −mẍg(t)R cos(α− θ(t)) θ(t) > 0

θ̇+(t) = eθ̇−(t) θ(t) = 0

(2.5)

The reference is made to Fig. 1, where ẍg(t) is the horizontal base acceleration, Io is the inertia
moment of polar inertia with respect to O and the rocking motion starts when |ẍg(t)| > gb/h.
The angle α = arctan b/h takes into account slenderness of the block. The resulting system of
equations is composed by two ordinary nonlinear differential equations and an algebraic one
relative to the impact instant. The system can assume the following simplified form

Io
mR
θ̈(t) + g sgn (θ(t)) sin[α− sgn (θ(t))θ(t)] = −ẍg(t) cos[α− sgn (θ(t))θ(t)] θ(t) 6= 0

θ̇+(t) = eθ̇−(t) θ(t) = 0

(2.6)

with the signum function given by

sgn (θ(t)) =

{

+1 θ(t) > 0

−1 θ(t) < 0

System (2.6) has been implemented in a routine developed on purpose with the symbolic code
Mathematica© (Wolfram, 2003) for a generic forcing ground acceleration. As it will be shown in
the following paragraph, the experimental data have been obtained placing an accelerometer on
top of the block, so that the above system should be rewritten referring to the upper face centre of
the specimen. The numerical solution of differential system (2.6) may be put more conveniently
in terms of the key point displacement, considering two reference systems with origins in the
two rotation points O and O′, namely R1 = {O,x, y} for θ(t) > 0 and R2 = {O′, x′, y′} for
θ(t) < 0. The rotation matrix R ∈ SO(2), where SO(2) is the orthogonal group of matrices with
det(R)  1, for positive clockwise rotation is

R(·) =
[

cos(·) sin(·)
− sin(·) cos(·)

]

Let θ(t) be a rotation function. It is possible to evaluate the position and the acceleration of the
point P at the time t in the two reference systems above described as

OP (t) = R · θ(t)
[

x
y

]

1

∂2

∂t2
OP (t) =

d2

dt2
[R · θ(t)]

[

x
y

]

1

θ(t) > 0

O′P (t) = R · θ(t)
[

x
y

]

2

∂2

∂t2
O′P (t) =

d

dt2
[R · θ(t)]

[

x
y

]

2

θ(t) < 0

(2.7)

After some manipulations, the acceleration can be rewritten as follows

∂2

∂t2
OP = [θ̈(t)∂R · θ(t)− θ̇2(t)R · θ(t)]

[

x
y

]

1

θ(t) > 0

∂2

∂t2
O′P = [θ̈(t)∂R · θ(t)− θ̇2(t)R · θ(t)]

[

x
y

]

2

θ(t) < 0

(2.8)

where

∂R(·) =
[

− sin(·) cos(·)
− cos(·) − sin(·)

]

∈ SO(2)
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The horizontal component of the relative acceleration can be deduced by (2.8), and is given by

ẍ(t) =

{

−[x1 cos(θ(t)) + y1 sin(θ(t))]θ̇2(t) + [−x1 sin(θ(t)) + y1 cos(θ(t))]θ̈(t) θ(t) > 0

−[x2 cos(θ(t)) + y2 sin(θ(t))]θ̇2(t) + [−x2 sin(θ(t)) + y2 cos(θ(t))]θ̈(t) θ(t) < 0

(2.9)

while the absolute acceleration is

ẍa(t) = ẍg(t) + ẍ(t)

2.2. Sliding model

The configuration of the block in the case of sliding motion can be characterized by transla-
tion of a generic point of the block with respect to the base. The friction force is a function of
vertical forces applied to the block and is opposite to the motion.

Fig. 2. The rigid block. Sliding motion

Starting from an equilibrium configuration, sliding motion begins when the maximum hori-
zontal force due to the static friction coefficient is attained

m|ẍg(t)| > mµs[ÿg(t) + g] (2.10)

The differential equation governing the sliding motion problem is

m[ẍg(t) + ẍ(t)] = − sgn (ẋ(t))µkm[ÿg(t) + g] (2.11)

with

sgn (ẋ(t)) =

{

+1 ẋ(t) > 0

−1 ẋ(t) < 0

The numerical procedure has been developed in the general case of nonzero vertical acceleration
of the base whose equations are deducted by (2.11) and (2.12) with ÿg(t) = 0

m|ẍg(t)| > mgµs m[ẍg(t) + ẍ(t)] = − sgn (ẋ(t))mgµk (2.12)

Starting from the instant in which the contact force due to static friction is exceeded (2.10),
differential equation of sliding (2.11) is integrated until the relative velocity ẋ(t) is nonzero.
When the velocity becomes null, the block is in relative equilibrium with the base (rest) until
the external force attains a value able to reactivate the sliding motion.
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3. Experimental tests

The behaviour of prismatic specimens subjected to harmonic shaking is investigated. The results
of the above analytical model are compared with experimental tests developed by means of an
unidirectional shaking table on prismatic specimens (Monaco et al., 2014). The specimens, prisms
with two different aspect ratios, were made of two different materials: cellular concrete and basalt
(Fig. 3).

Fig. 3. Specimens respectively made of cellular concrete (C, left) and basalt (B, center), with cubic (C)
and prismatic (P) shape and five types of support (right)

On the shaking table plane, five different material supports were arranged, in order to analyze
the influence of three different parameters: aspect ratio, friction coefficient and base motion
frequency. The shaking table was in fact able to perform a horizontal harmonic excitation with
a variable frequency up to 10Hz and a constant span of 1.5mm.

Fig. 4. Shaking table and the acquisition system (left) and the test device for determination of the
friction coefficient (right)

As a result, combinations of ten different friction coefficients determined with an on purpose
designed test device, and two different aspect ratios (b/h = 1 for cubic specimens and b/h = 0.5
for prismatic ones), were taken into account.

The friction coefficient has been determined by means of a test device made of a steel
structure in which the upper plane could be inclined by means of a worm gear that could be
manually controlled. The specimen, equipped with an accelerometer, was placed on the apparatus
to which the support material had been previously fixed. The inclination of the support plane
was increased slowly until the beginning of specimen sliding (Fig. 4). The values of the friction
coefficients so determined were considered as static friction coefficients. They are reported in
Table 1 for basalt and cellular concrete specimens, respectively. Shenton (1996) developed simple
criteria to evaluate the initial motion of freestanding symmetric objects on a moving base with
the acceleration described by a piecewise continuous function ranging from zero (base at rest) to
the value Ag (peak value). The author divided the space Ag −ϕ into four regions corresponding
to the four possible motions: rest, slide, rocking, slide-rock
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Fig. 5. Four Shenton’s regions with the proposed enlargement in the case of the sinusoidal base
excitation

Ag ¬ ϕ
Ag ¬ γ

}

rest

Ag > γ

Ag ¬
(1 + 4γ2)ϕ − 3γ
(4 + γ2)− 3γϕ











rocking

Ag > ϕ

ϕ < γ

}

slide

ϕ > γ

Ag >
(1 + 4γ2)ϕ − 3γ
(4 + γ2)− 3γϕ











slide/rock

(3.1)

where γ is the aspect ratio, γ = b/h and Ag is the peak ground acceleration. The criteria,
expressed by relations (3.1) are represented in Fig. 5. A tentative description of the variation of
the Shenton regions for the sinusoidal base acceleration was proposed in (Monaco et al., 2014).
It was shown that in the last case, expansion of the slide-rocking area with respect to that fixed
by Shenton was observed (Fig. 5). The expanded slide-rocking area proposed is the following

Ag > γ

Ag >
(1 + 4γ2)ϕ− 3γ
(4 + γ2)− 3γϕ











slide/rock (3.2)

The results of the experimental tests confirm the expansion of the slide-rocking area for the
harmonic base acceleration: Figure 6 represents two different Shenton planes corresponding to
the two aspect ratios examined.
It can be noted that, according to the Shenton scheme, for the unitary aspect ratio, the

rocking area should be absent, but the experiments have shown the presence of all motion for
cubic specimens (rest, sliding and rocking). Similarly, in the case of prismatic specimens, the
experiments have shown the presence of all motion (rest, sliding and slide-rocking). The enlar-
gement of the slide-rocking area is reported in Fig. 6 right, where the red line is the boundary of
the enlarged area represented by relation (3.2). The experimental results were obtained placing
the specimen on the shaking table to which the support material had been previously fixed. An
accelerometer was placed on the top of the specimen to evaluate the accelerations registered to-
gether with the shaking table data by means of a computer acquisition data system (Fig. 4). The
laboratory time histories are discussed and compared with the analytical ones in the following
Section.
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Fig. 6. Friction coefficient vs. peak specimen acceleration for cubic blocks (γ = 1, left) and prismatic
blocks (γ = 0.5, right)

4. Numerical comparisons

The laboratory test conditions are similar to the real cases of freestanding art objects in mu-
seums or laboratory equipments in hospitals, where friction coefficients are of various types due
to different quality of support planes (pedestals, shelves, floor). In order to provide a ductile
analytical tool for the safeguard of such objects, the numerical procedure previously described
in Section 2 has been on purpose implemented in the Mathematica R○ (2003) routine. Theore-
tical curves have been obtained by taking into account material parameters evaluated in the
experimental tests and reported in Table 1.

Table 1. Static and dynamic friction coefficients, restitution coefficients and frequencies of the
examined time histories

Motion Specimen Support Static friction Dynamic friction Restitution Frequency
type type material coefficient coefficient coefficient examined

Rocking BP

1 0.31 – 0.925 9.2

2 0.29 – 0.925 9.2
4 0.38 – 0.955 14.3
5 0.39 – 0.955 14.2

Sliding CP

1 0.30 0.26 – 6.3
2 0.29 0.25 – 6.7
4 0.33 0.29 – 7.2
5 0.30 0.26 – 7.2

Sliding BP

1 0.31 0.27 – 7.0
2 0.29 0.25 – 7.5
4 0.38 0.33 – 8.3
5 0.39 0.34 – 7.5

Sliding CC

1 0.33 0.29 – 9.3
3 0.45 0.40 – 8.8
4 0.33 0.29 – 11.0
5 0.30 0.26 – 8.3

Sliding BC

1 0.31 0.27 – 10.0
2 0.29 0.26 – 8.0
3 0.51 0.45 – 9.0
4 0.36 0.32 – 8.7
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Both restitution and dynamic friction coefficients used in the analytical rocking model are
reported. They are satisfactorily in good agreement with the experimental data. In particular,
the value of the dynamic friction coefficient used is 88% of the static friction coefficient measured
in the laboratory tests, according to the literature, usual values (Bryant, 2016). In Figs. 7-11,
time histories obtained in the numerical and experimental campaign are reported: the red line
gives the analytical results while the grey one the experimental data. It must be noted that part
of the mechanical parameters has been estimated, nevertheless, the numerical model is capable
of representing the quality of motion with great accuracy.

Fig. 7. Rocking motion: analytical (red) and experimental (grey) acceleration time histories

The numerical diagrams obtained are in good agreement with the experimental ones, see for
example diagrams BP2 and BP4 in Fig. 8 (basalt prisms) and diagrams BC2 and BC4 (basalt
cubes) in Fig. 9 or diagrams CP4 and CP5 in Fig. 10 (concrete prisms) and diagrams CC4 and
CC5 (concrete cubes) in Fig. 11. The presence of the accelerometer on the top of the specimen
and the acquisition wire gives in general small variation in a single cycle. The analytical curves
present small discontinuities due to the structure of the governing equations, but in general the
dynamic behaviour is well identified. This confirms that the only estimated parameter, i.e. the
dynamic friction coefficient reported in Table 1, has been correctly evaluated. In fact, a reduction
of 12% with respect to the static friction coefficient has been experimentally determined. The
experimental determination of the dynamic friction coefficient and realization of dynamic tests
are somewhat difficult, so that the theoretical model is the starting point for an optimization
in the case of safeguard of freestanding objects. It must be considered that, nowadays, it is
possible to make surfaces in which the friction coefficient can be previously determined, so that
a vulnerable object can be endowed with a specific base surface in order to obtain, in contact
with the support plane, a fixed friction coefficient. The motion can in this case be controlled
in the case of strong earthquakes and motions that can cause more damage, i.e. rocking ones
can be avoided. As expected from the general mechanic statements and verified experimentally,
the static friction coefficient is independent of the shape of the specimen and depends only on
the contact surfaces. The analysis of experimental diagrams has been taken into account in the
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Fig. 8. Sliding motion: analytical (red) and experimental (grey) acceleration time histories

Fig. 9. Sliding motion: analytical (red) and experimental (grey) acceleration time histories

estimation of the dynamic friction coefficient, so that an unique parameter for the aspect ratio
has been considered in the numerical procedure. It must be noted that the use of two different
values for dynamic and static friction coefficients is the reason of jumps in the analytical curves.
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Fig. 10. Sliding motion: analytical (red) and experimental (grey) acceleration time histories

Fig. 11. Sliding motion: analytical (red) and experimental (grey) acceleration time histories

5. Conclusions

The problem of a freestanding rigid object on a moving base has been investigated. The results of
numerical modelling of both sliding and rocking motion have been presented and compared with
experimental data obtained by the authors on rigid blocks simply supported on a rigid ground
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with different friction coefficients between the object and the supporting plane and different
aspect ratios of the rigid object. The numerical procedure involves all possible types of motion
and takes into account static and dynamic friction coefficients. While the first one has been
experimentally derived, the second one has been estimated as a percent of the first, both the
values being independent of the shape of the rigid object tested. It has been shown that in
the range of frequencies of the laboratory tests performed, a reduction by 12% of the static
friction coefficient gives a reliable value of the dynamic one. Laboratory tests and numerical
results are in good agreement, which confirms that the theoretical model is the starting point
for an optimization in the case of safeguard of freestanding objects. It must be emphasized that,
nowadays, it is possible to design surfaces in which the friction coefficient can be previously
determined, so that a vulnerable object can be endowed with a specific base surface in order
to obtain, in contact with the support plane, a fixed friction coefficient. The motion can in
this case be controlled in the case of strong earthquakes and motions that can cause more
damage, i.e. rocking ones, can be avoided. Since the experimental tests are often difficult as well
as expensive, especially in the case of art objects and ancient artifacts, the development of a
reliable analytical procedure and simple determination of mechanical parameters involved in the
correct interpretation of the problem is very useful.
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Stirlingshire, U.K., DOI: 10.4203/ccp.106.144

18. Gesualdo A., Monaco M., 2015, Constitutive behaviour of quasi-brittle materials with anisotro-
pic friction, Latin American Journal of Solids and Structures, 12, 4, 695-710, DOI: 10.1590/1679-
78251345

19. Guadagnuolo M., Monaco M., 2009, Out of plane behaviour of unreinforced masonry walls,
[In:] Protection of Historical Buildings, 2, 1177-1180, London, New York: CRC Press, Taylor &
Francis Group

20. Housner W.G., 1963, The behaviour of inverted pendulum structures during earthquake, Bulletin
of the Seismological Society of America, 53, 2, 403-417

21. Ishiyama Y., 1982, Motions of rigid bodies and criteria for overtuning by earthquake excitations,
Earthquake Engineering and Structural Dynamics, 10, 5, 635-650, DOI: 10.1007/s11069-014-1076-9

22. Koh A.S., 1986, Rocking of rigid bodies on randomly shaking foundations, Nuclear Engineering
and Design, 97, 2, 269-276, DOI: 10.1016/0029-5493(86)90114-7

23. Konstantinidis D., Makris N., 2009, Experimental and analytical studies on the response of
freestanding laboratory equipment to earthquake shaking, Earthquake Engineering and Structural
Dynamics, 38, 6, 827-848, DOI: 10.1002/eqe.871

24. Konstantinidis D., Makris N., 2010, Experimental and analytical studies on the response of
a 1/4 scale model of freestanding laboratory equipment subjected to strong earthquake shaking,
Bulletin of Earthquake Engineering, 8, 6, 1457-1477, DOI: 10.1007/s10518-010-9192-8

25. Lenci S., Rega G., 2000, Periodic solutions and bifurcations in an impact inverted pendulum
under impulsive excitation, Chaos, Solitons and Fractals, 11, 5, 2453-2472, DOI: 10.1016/S0960-
0779(00)00030-8

26. Makris N., Kampas G., 2016, Size versus slenderness: two competing parameters in the seismic
stability of free-standing rocking columns, Bulletin of the Seismological Society of America, 106,
1, 104-122, DOI: 10.1785/0120150138

27. Monaco M., Guadagnuolo M., Gesualdo A., 2014, The role of friction in the seismic risk
mitigation of freestanding art objects, Natural Hazards, 73, 2, 389-402, DOI: 10.1007/s11069-014-
1076-9

28. Prieto F., Lourenço P.B., 2005, On the rocking behaviour of rigid objects, Meccanica, 40, 2,
121-133, DOI: 10. 1007/s11012-004-5875-z

29. Purvance M.D., Abdolrasool A., Brune J.N., 2008, Freestanding block overturning fragi-
lities: numerical simulation and experimental validation, Earthquake Engineering and Structural
Dynamics, 37, 5, 791-808, DOI: 10.1002/eqe.789



Rocking of freestanding objects: theoretical and experimental comparisons 991

30. Shao Y., Tung C.C., 1999, Seismic response of unanchored bodies, Earthquake Spectra, 15, 3,
523-536, DOI: 10.1193/1.1586056

31. Shenton H.W., 1996, Criteria for initiation of slide, rock, and slide-rock rigid-body mo-
des, Journal of Engineering Mechanics ASCE, 122, 7, 690-693, DOI: 10.1061/(ASCE)0733-
9399(1996)122:7(690)

32. Sienkiewicz Z., 2009, Local modelling of backfill effects for rigid axisymmetric foundations under
dynamic excitation, Journal of Theoretical and Applied Mechanics, 47, 4, 923-942

33. Sinopoli A., 1997, Unilaterality and dry friction: a geometric formulation for two-dimensional
rigid body dynamics, Nonlinear Dynamics, 12, 4, 343-366, DOI: 10.1023/A:1008289716620

34. Spanos P., Koh A.S., 1984, Rocking of rigid blocks due to harmonic shaking, Journal of Engine-
ering Mechanics ASCE, 110, 11, 1627-1642, DOI: 10.1061/(ASCE)0733-9399(1984)110:11(1627)

35. Spanos P.D., Roussis P.C., Politis N.P.A., 2001, Dynamic analysis of stacked rigid blocks,
Soil Dynamics and Earthquake Engineering, 21, 7, 559-578, DOI: 10.1016/S0267-7261(01)00038-0

36. Voyagaki E., Psycharis I., Mylonakis G., 2013, Rocking response and overturning criteria
for free standing rigid blocks to single-lobe pulses, Soil Dynamics and Earthquake Engineering, 46,
85-95, DOI: 10.1016/j.soildyn.2012.11.010

37. Voyagaki E., Psycharis I., Mylonakis G., 2014, Complex response of a rocking block
to a full-cycle pulse, Journal of Engineering Mechanics ASCE, 140, 6, 04014024, DOI:
10.1061/(ASCE)EM.1943-7889.0000712, 04014024

38. Wolfram S., 2003, The Mathematica Book, Wolfram Media, USA

39. Yim S.C.S., Chopra A., Penzien J., 1980, Rocking response of rigid blocks to earthquakes,
Earthquake Engineering and Structural Dynamics, 8, 6, 565-580, DOI: 10.1002/eqe.4290080606

40. Yim S.C.S., Lin H., 1991, Nonlinear impact and chaotic response of slender rocking ob-
jects, Journal of Engineering Mechanics ASCE, 117, 9, 2079-2100, DOI: 10.1061/(ASCE)0733-
9399(1991)117:9(2079)

41. Zhang J., Makris N., 2001, Rocking response of free-standing blocks under cycloidal pul-
ses, Journal of Engineering Mechanics ASCE, 127, 5, 473-483, DOI: 10.1061/(ASCE)0733-
9399(2001)127:5(473)

Manuscript received September 7, 2017; accepted for print February 28, 2018


